Crystal Structure and Thermal Behavior of Cs₂[B₄O₅(OH)₄]3H₂O

M. Touboul,^{*,1} N. Penin,^{*} and G. Nowogrocki[†]

*Laboratoire de Réactivité et de Chimie des Solides, UPRES A 6007, 33, rue St-Leu, 80039 Amiens Cedex, France; and †Laboratoire de Cristallochimie et Physicochimie du Solide, URA 452, ENSC Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France

Received April 21, 1998, in revised form November 9, 1998, accepted November 22, 1998

The crystal structure of synthetic Cs₂[B₄O₅(OH)₄]3H₂O was determined from single-crystal X-ray diffraction data. The compound is monoclinic, space group $P2_1/c$; the unit cell parameters are a = 8.424(2) A, b = 11.378(3) Å, c = 13.160(5) Å, $\beta =$ 92.06(3)°; Z = 4. The crystal structure was solved from 6355 reflections until R = 0.029; it contains isolated $[B_4O_5(OH)_4]^2$ polyanions separated by free water molecules and Cs⁺ ions. Although its formula is the same as that of the tincalconite $Na_{2}[B_{4}O_{5}(OH)_{4}]3H_{2}O_{5}(OH)_{4$ close to that of synthetic $K_2[B_4O_5(OH)_4]2H_2O$ which contains only two isolated water molecules. In the cesium and the potassium borates, the $[B_4O_5(OH)_4]^{2-}$ anions have not a two-fold axis as in the tincalconite; the shorthand notations of these two kinds of anions shall be noted as: 4: $2\Delta + 2T$ in the first two borates and 4: $(\Delta + T)_2$ in the tincalconite, Δ and T being triangular and tetrahedral borons, respectively.Cs₂[B₄O₅(OH)₄]3H₂O indexed X-ray powder diffraction pattern is given. The dehydration of this borate occurs in two close steps and leads to an amorphous phase; this process is well explained considering the structure and especially the change in the Cs⁺ coordination during the heating. © 1999 Academic Press

INTRODUCTION

There is little information about cesium borates (1–5). Indeed, the best known compound is $CsB_3O_5(CBO)$. Its synthesis and crystal structure were performed by Krogh-Moë in 1958 (6) and 1974 (7), respectively. Large single crystals have recently been obtained by Wu *et al.* (8) who measured some properties which show that CBO is a good nonlinear optical material. Some other papers have been published (9, 10) concerning the effect of boric acid on cesium transport through the primary circuit pipework of a nuclear power plant using a light water reactor (LWR).

It was important to expand our knowledge about hydrated and anhydrous cesium borates to find other interesting compounds and also other routes to synthesize CBO. This paper deals with the hydrated cesium borate $Cs_2B_4O_7 \cdot 5H_2O$. This compound was first pointed out by Rollet and Andrès (1). Kocher (2) published an important paper about cesium borates and especially about $Cs_2B_4O_7 \cdot 5H_2O$ which has a congruent solubility above $19^{\circ}C$; another hydrate, $Cs_2B_4O_7 \cdot 2H_2O$, was found. The nonindexed powder patterns of these two compounds were published (PDF 22-177 and 22-175).

EXPERIMENTAL

To synthesize this borate following Kocher's indication (2), it is necessary to start with an aqueous solution of Cs_2CO_3 and H_3BO_3 with a B/Cs value of 1.9. After CO_2 release, its evaporation under constant stirring and heating led to the wanted compound being a white powder. It is necessary to keep two phases, solution and solid, to prevent the coprecipitation of another borate. Chemical analyses were performed by means of the usual acid-base titration. Large single crystals can easily be obtained by slow evaporation of a diluted solution at room temperature. This compound has been characterized by X-ray powder diffraction (Siemens D5000 diffractometer; $\lambda Cu K \alpha_1 = 1.5406$ Å) and by thermal analyses using a Setaram TGDTA 92 apparatus (platinum crucibles; heating rate of 600°C/h, in air; sample amounts around 40 mg) and a Guinier-Lenné camera $(\lambda CuK\alpha = 1.5418 \text{ Å}; \text{ heating rate of } 6^{\circ}\text{C/h}, \text{ in air, between}$ 20 and 600°C).

STRUCTURAL STUDY

A colorless single crystal was chosen; crystal data and intensity collections are given in Table 1. Absorption corrections were made using De Meulenaer and Tompa's analytical method (11). The structure resolution was classical: cesium atom positions were deduced from Patterson functions. Refinement, using the SHELX-76 program (12), led to R = 0.251 and $R_w = 0.313$. Ten oxygen atoms were evidenced on the Fourier difference map: the reliability factors got down to 0.151 and 0.169, respectively. Two remaining oxygen and four boron atoms were then localized and led to

¹To whom correspondence should be addressed.

			D_{eq} (A) of $Cs_2[D_4O_5(O11)_4]S11_2O$ with c.s.u. s in Farentineses					
Formula weight (g/mol)	511.12	Atom	X	У	Ζ	$B_{\rm eq}$		
Space group	$P2_1/C$ (N ⁻¹⁴)	$C_{\rm s}(1)$	0.26745(3)	0.05555(3)	0.48032(2)	2 715(7)		
Unit cell parameters	a = 0.424(2) A, b = 11.576(5) A, $a = 12.160(5) \text{ Å}; b = 02.06(2)^{\circ}$	$C_{s}(2)$	0.20749(3) 0.45359(4)	0.03333(3) 0.58447(3)	0.35863(3)	3.251(8)		
<i>V</i> : 7	$\mathcal{L} = 15.100(5) \text{ A}, p = 92.00(5)$ 1260 5(6) Å ³ · A	B(1)	-0.1292(5)	0.8796(4)	0.0777(4)	1 52(9)		
V, Σ Density (a/am^3)	1200.5(0) A, 4 $D_{22} = 2.60(1)$	B(2)	0.122(5) 0.1022(5)	0.6555(4)	0.0777(4) 0.1972(3)	1.32(9)		
Eaces limiting the crystals and	$D_X = 2.09(1)$ (100): 0.08: (100): 0.08: (011): 0.084	B(3)	0.1022(5) 0.1048(5)	0.8683(4)	0.1972(3) 0.1985(3)	1.35(9)		
distances (mm) ^(a)	(100): 0.08, (-100) : 0.08, (011) : 0.084 (016): 0.12: $(0, 11)$: 0.16: $(0, 2, 1)$:	B(4)	-0.1384(5)	0.7691(4)	0.2360(3)	1.38(9)		
distances (iiiii)	(010), $(0.12, (0.11), 0.10, (0.21))$, 0.144(0.14)(0.06(01.1))(0.172)	O(1)	-0.2058(4)	0.9237(3)	-0.0085(2)	2 36(8)		
Diffractometer	CAD4 (Enraf Nonius)	O(2)	0.0273(3)	0.9237(3) 0.9044(2)	0.0005(2) 0.0975(2)	1.54(6)		
Temperature	208 K	O(3)	-0.2182(3)	0.8138(2)	0.1407(2)	1.60(6)		
Radiation	$M_0 K_{\alpha}$ graphite monochromated	O(4)	0.1835(3)	0.5509(2)	0.1929(3)	1.92(7)		
Radiation	$\lambda = 0.71069 \text{ Å}$	O(5)	0.1882(3)	0.7556(2)	0.1858(2)	1.46(6)		
Scattering factors	Neutral atoms (13)	O(6)	-0.2617(3)	0.7490(3)	0.3085(2)	1.87(7)		
Scan type	$\theta = 2\theta$	O(7)	-0.0565(3)	0.6560(2)	0.2148(2)	1.46(6)		
θ range (deg)	2-31	O(8)	-0.0205(3)	0.8545(2)	0.2720(2)	1.24(6)		
Standard reflections	2-2-4:-1-4-3:-4 1-1	O(9)	0.2214(3)	0.9553(2)	0.2282(2)	1.63(6)		
Range in h. k. l	-12 < h < 12; $-17 < k < 17$:	Ow(1)	0.5211(5)	0.3946(4)	0.1540(3)	4.2(1)		
	0 < 1 < 19	Ow(2)	0.4659(5)	0.7874(5)	0.0714(3)	5.9(2)		
Maximum scan time	60s	Ow(3)	0.9360(6)	0.3256(4)	0.0293(3)	4.1(1)		
Period of intensity control	7200s	H(1)	0.178(6)	1.019(5)	0.237(4)	1.6		
Reflections collected	6872	H(2)	-0.150(7)	0.950(5)	-0.040(5)	2.4		
Reflections with $I > 3\sigma(I)$	6355	H(3)	-0.219(6)	0.701(5)	0.354(4)	1.9		
$R_{\rm int}$ before absorption correction	0.029	H(4)	0.134(7)	0.513(5)	0.201(5)	1.8		
Linear absorption coefficient	59.3 cm^{-1}	H(5)	0.601(8)	0.375(6)	0.192(5)	4.2		
Transmission factors	0.462-0.363	H(6)	0.442(8)	0.362(6)	0.179(5)	4.2		
Averaged reflections $(I > 3\sigma(I))$	3026	H(7)	0.553(8)	0.790(6)	0.119(6)	5.9		
$R_{\rm int}$ after absorption correction	0.018	H(8)	0.388(8)	0.773(7)	0.110(6)	5.9		
Weighing scheme	$1/\sigma^2(F)$	H(9)	0.847(8)	0.287(6)	0.032(5)	4.1		
Number of variables	194	H(10)	0.933(8)	0.317(6)	0.092(5)	4.1		
R	0.029							
$R_{\rm w}$	0.029	Note. I	For hydrogen atom	is, fixed B_{eq} value	es correspond to	those of the		
GOF	3.28	oxygen at	tom which is linke	d to them.				

TABLE 1

Crystal Data and Intensity Collections for

TABLE 2 **Final Atomic Coordinates and Equivalent Thermal Parameters** , $(Å^2)$ of $Cs_2[B_4O_5(OH)_4]3H_2O$ with e.s.d.'s in Parentheses

Atom	x	У	Ζ	$B_{\rm eq}$
Cs(1)	0.26745(3)	0.05555(3)	0.48032(2)	2.715(7)
Cs(2)	0.45359(4)	0.58447(3)	0.35863(3)	3.251(8)
B(1)	-0.1292(5)	0.8796(4)	0.0777(4)	1.52(9)
B(2)	0.1022(5)	0.6555(4)	0.1972(3)	1.33(9)
B(3)	0.1048(5)	0.8683(4)	0.1985(3)	1.26(9)
B(4)	-0.1384(5)	0.7691(4)	0.2360(3)	1.38(9)
O(1)	-0.2058(4)	0.9237(3)	-0.0085(2)	2.36(8)
O(2)	0.0273(3)	0.9044(2)	0.0975(2)	1.54(6)
O(3)	-0.2182(3)	0.8138(2)	0.1407(2)	1.60(6)
O(4)	0.1835(3)	0.5509(2)	0.1929(3)	1.92(7)
O(5)	0.1882(3)	0.7556(2)	0.1858(2)	1.46(6)
O(6)	-0.2617(3)	0.7490(3)	0.3085(2)	1.87(7)
O(7)	-0.0565(3)	0.6560(2)	0.2148(2)	1.46(6)
O(8)	-0.0205(3)	0.8545(2)	0.2720(2)	1.24(6)
O(9)	0.2214(3)	0.9553(2)	0.2282(2)	1.63(6)
Ow(1)	0.5211(5)	0.3946(4)	0.1540(3)	4.2(1)
Ow(2)	0.4659(5)	0.7874(5)	0.0714(3)	5.9(2)
Ow(3)	0.9360(6)	0.3256(4)	0.0293(3)	4.1(1)
H(1)	0.178(6)	1.019(5)	0.237(4)	1.6
H(2)	-0.150(7)	0.950(5)	-0.040(5)	2.4
H(3)	-0.219(6)	0.701(5)	0.354(4)	1.9
H(4)	0.134(7)	0.513(5)	0.201(5)	1.8
H(5)	0.601(8)	0.375(6)	0.192(5)	4.2
H(6)	0.442(8)	0.362(6)	0.179(5)	4.2
H(7)	0.553(8)	0.790(6)	0.119(6)	5.9
H(8)	0.388(8)	0.773(7)	0.110(6)	5.9
H(9)	0.847(8)	0.287(6)	0.032(5)	4.1
H(10)	0.933(8)	0.317(6)	0.092(5)	4.1

"The dimensions given are the distances from the center of the crystal to

R = 0.103 and $R_w = 0.095$. When the thermal agitation was made anisotropic, the reliability factors fell down to 0.033 and 0.044, respectively. The H atoms were easily found on the Fourier difference map and were refined, being attributed isotropic thermal factors equal to those of the atoms to which they are bound. The final reliability factors were R = 0.029 and $R_w = 0.029$. The atomic coordinates and the thermal motion parameters are reported in Tables 2 and 3; significant bond lengths and angles are listed in Table 4.

the eight faces of the platelet.

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

Figure 1 shows the crystal structure of $Cs_2[B_4O_5(OH)_4]$ 3H₂O. It consists of discrete borate anions separated by Cs cations and isolated water molecules. The borate polyanion is constituted of two BO₂(OH) groups (triangular boron Δ) and two BO₃(OH) groups (tetrahedral boron T) (Fig. 2). is linked to them.

This isolated anion $[B_4O_5(OH)_4]^{2-}$ has been found in a lot of hydrated borates; its shorthand notation, following the classification proposed by Heller (14) and Christ and Clark (15) is $4:2\Delta + 2T$. Such an isolated anion was described by Morimoto (16) and later by Levy and Lisensky (17) in the mineral borax, $Na_2[B_4O_5(OH)_4]8H_2O$. This polyanion also exists in tincalconite, $Na_2[B_4O_5(OH)_4]3H_2O$ (18), in synthetic $K_2[B_4O_5(OH)_4]^2H_2O$ (19), and in several other hydrated borates containing alkaline (or pseudo-alkaline) cations, or alkaline and earth alkaline cations as, for example, (NH₄)₂[B₄O₅(OH)₄]2H₂O (20), K_{1.67}Na_{0.33}[B₄ $O_5(OH)_4$]3H₂O (21), K₂Ca[B₄O₅(OH)₄]₂8H₂O (22), $K_2Sr[B_4O_5(OH)_4]_210H_2O$, and $(NH_4)_2Ca[B_4O_5(OH)_4]_2$ 8H₂O (23). However, it is interesting to note that a distinction can be made when considering the structure of the $[B_4O_5(OH)_4]^{2-}$ anion. There are two possibilities: this ion has a two-fold axis or it does not. In the first case, there are only two boron atoms crystallographically independent as, for example, in borax and in tincalconite. In the second case, the structure contains four boron atoms crystallographically independent as in K₂[B₄O₅(OH)₄]2H₂O (19) and in

262

TABLE 3 Anisotropic Thermal Vibration Parameters ($\times 10^4$) (e.s.d.'s in Parentheses) for All the Atoms of Cs₂[B₄O₅(OH)₄]3H₂O Except Hydrogen Atoms

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cs(1)	88.5(4)	61.2(3)	35.4(2)	2.2(2)	-30.9(2)	65.5(2)
Cs(2)	91.9(4)	74.0(3)	47.6(2)	-26.0(3)	-4.8(2)	2.7(2)
B(1)	55 (5)	22(3)	26(2)	2(3)	-4(3)	5 (2)
B(2)	59 (5)	18 (3)	20(2)	2 (3)	1 (3)	0(2)
B(3)	47 (5)	21 (3)	20(2)	2 (3)	-1(3)	1 (2)
B(4)	44 (5)	22 (3)	25 (2)	-1(3)	0(3)	3 (2)
O(1)	66 (4)	55(3)	33 (2)	-20(3)	-15(2)	23 (2)
O(2)	42 (3)	35(2)	23 (2)	-4(2)	-4(2)	8(1)
O(3)	49 (4)	29 (2)	28 (2)	-7(2)	-7(2)	9(1)
O(4)	59 (4)	20(2)	44 (2)	3 (2)	7 (2)	2 (2)
O(5)	42 (3)	16(2)	34 (2)	0(2)	6 (2)	0(1)
O(6)	56 (4)	35(2)	33 (2)	2(2)	13(2)	9 (2)
O(7)	45 (3)	16(2)	33 (2)	1 (2)	0(2)	0(1)
O(8)	50(3)	16(2)	22(1)	-1(2)	1 (2)	1(1)
O(9)	44 (3)	20(2)	37 (2)	-4(2)	-5(2)	0(2)
Ow(1)	104(6)	110(4)	54 (3)	-48(4)	-30(3)	28 (3)
Ow(2)	207(8)	78 (4)	33 (2)	-1(4)	-12(4)	1 (2)
Ow(3)	89 (6)	227(8)	50 (3)	- 19 (6)	10(3)	7 (4)

the studied compound $Cs_2[B_4O_5(OH)_4]3H_2O$. To distinguish between these possibilities, the shorthand notation of the borate anion should be written as $4:(\Delta + T)_2$ when a two-fold axis exists and $4:2\Delta + 2T$ when it does not. For

FIG. 1. Projection of the structure of $Cs_2[B_4O_5(OH)_4]3H_2O$ in the (001) plane; dark circles represent Ow atoms and light circles Cs^+ ions. For the sake of clarity, only a part of $[B_4O_5(OH)_4]^{2-}$ ions are reported.

TABLE 4		
Interatomic Distances (Å) and Angles	(°)	in
$Cs_2[B_4O_5(OH)_4]3H_2O$		

			Triangular	bor	ons			
B(1)-	O(1)	1.379(6)	(D (1)	-B(1)-	O(2)	1	20.1(3)
_	O(2)	1.364(5)	C	$\dot{\mathbf{D}(1)}$	-B(1)-	O(3)	1	16.7(3)
_	O(3)	1.362(5)	C	(2)	-B(1)-	- O(3)	1	23.1(3)
Mean	- (-)	1.368	Ν	lean	()	- (-)	1	20
		dista	inces to the	e mea	ın plan	e		
B (1):	-0.007(5)); O(1):	0.002(3);	O(2	2): 0.00)2(2);	O(3):	0.002(2)
B(2)	O(4)	1 375(5)	O(4)	_B	(2)	O(5)	116	59(3)
D (2)	O(4)	1.373(3) 1.361(5)	O(4)	_B	(2)	O(3)	120	2(3)
_	O(3)	1.365(5)	O(4)		(2)	O(7)	120	2(3)
Mean	O(I)	1.367	Mean	D	(2)	O(I)	122)
		dista	inces to the	e mea	ın plan	e		
B(2):	-0.009(4)); O(4):	0.003(4);	O(5	5): 0.00)3(3);	O(7):	0.003(3)
			Tetrahedra	1 bor	ons			
B(3)	O(2)	1 516(5)	O(2)	-F	3(3)-	O(5)	109 2	2(3)
D (3)	O(5)	1.310(3) 1.475(5)	O(2)	_F	3(3)_	O(8)	108.1	(2)
_	O(3)	1.475(5) 1.466(5)	O(2)	_F	3(3)	O(0)	108.1	7(3)
	O(0)	1.400(5) 1.430(5)	O(2)	L L	2(3)	O(3)	100.7	2(2)
	O(J)	1.+55(5)	O(5)	L L	3(3)	O(0)	107.0	2(2)
Moon		1 474	O(3)	-1 T	$(3)^{-}$	O(9)	112 2	n(3)
wican		1.4/4	U(0) Mear		3 (3)-	0(9)	100 4	5(5)
			Witai	L			109	,
B(4)-	O(3)	1.491(5)	C	D (3)	-B(4)-	O(6)	1	07.1(3)
_	O(6)	1.454(5)	C) (3)	-B(4)-	O(7)	1	09.6(3)
_	O(7)	1.491(5)	C	D (3)	-B(4)-	O(8)	1	09.1(3)
_	O(8)	1.456(5)	C	0(6)	-B(4)-	O(7)	1	09.5(3)
	Mean	1.473	C	0(6)	-B(4)-	O(8)	1	12.7(3)
			C) (7)	-B(4)-	O(8)	1	08.8(2)
			Ν	lean	()		1	09.5
D (4)		B-O	-B inside t	he B ₂	$_4O_5$ un	it		1 - 2 (1)
B(1)-	O(2) - B(3)	119.	6(4)	B(.	1) - O(3))-B(4)	1	17.3(4)
B(2)-	O(5) - B(3)	117.	2(4)	B(2	2) - O(7))– B(4)	1	19.9(4)
B (3)–	O(8) - B(4)	110.	8(3)					
			Hydroxyl	grou	ips			
O(1)-	H(2)	0.70(6)	В	(1)-	O(1)-	H(2)	1	10(6)
O(4)-	H(4)	0.61(6)	В	(2)-	O(4)-	H(4)	1	05(6)
O(6)-	H(3)	0.88(5)	В	(4)-	O(6)-	H(3)	1	05(4)
O(9)-	H(1)	0.82(6)	В	(3)-	O(9)-	H(1)	1	10(4)
			Water mo	lecul	les			
Ow(1)	– H(5)	0.85(7)	water me	H(5)	= Ow(1)- H(6	9	106(8)
$O_w(1)$	- H(6)	0.03(7) 0.84(7)		11(3)	0(1) 11((,)	100(0)
$O_w(2)$	- H(7)	0.04(7)		H(7)	- Ow(2)- H(8	0	102(8)
$O_w(2)$	- H(8)	0.95(7)		11(7)	Ow(2) 11(0	,,	102(0)
Ow(2) Ow(3)	- H(0)	0.80(7)		H(0)	- Ow(3)H(1	0)	81(8)
Ow(3)	- H(10)	0.83(7)		11())	Ow(5) 11(1	.0)	01(0)
0 (0)	11(10)	0.05(7)						
	Hydro	ogen bond	s (< 2.2 Å)	and	related	O-O b	onds	
O(2)-	$H(2^{i})$	2.11	0(6) C	D (2)–	0	(1 ⁱ)	2.754	4(4)
O(3)-	$H(7^{ii})$	1.96	(7) C	D (3)–	0	$w(2^{ii})$	2.798	3(5)
O(5)-	H(8)	2.00	(7) C	0(5)-	0	w(2)	2.850)(5)
O(6)-	H(6)	2.00	(7) C	0(6)-	0	w(1)	2.800)(5)
O(7)-	$H(1^{iii})$	1.98	(6) C	D (7)–	0	(9 ⁱⁱⁱ)	2.790)(3)
O(8)-	H(4)	2.08	(6) C	D (8)–	0	(4)	2.672	2(3)
O(8)-	H(10 ^{iv}	^v) 1.96	(7) C	D (8)–	0	$w(3^{iv})$	2.705	5(5)
O(9)-	$H(5^{iv})$	2.02	(7) C	0(9)-	0	$w(1^{iv})$	2.710)(5)

	Cs–O bon	ds (< 3.50 Å)	
$Cs(1) - Ow(1^{v})$	3.124(4)	Cs(2) - O(4)	3.118(3)
$- Ow(1^{vi})$	3.143(4)	$- O(6^{viii})$	3.131(3)
$- Ow(3^{vi})$	3.128(5)	$- Ow(2^{ix})$	3.155(4)
$- Ow(3^{vii})$	3.189(5)	$- O(9^{vi})$	3.345(3)
- O(4 ^v)	3.152(4)	$- O(1^{x})$	3.307(3)
$- O(7^{iii})$	3.276(3)	$- O(1^{iii})$	3.448(3)
- O(3 ⁱⁱⁱ)	3.361(2)		

TABLE 4—Continued

Note. Symmetry code: (i) -x, 2-y, -z; (ii) x-1, y, z; (iii) -x, y-1/2, 1/2-z; (iv) 1-x, 1/2+y, 1/2-z; (v) x, 1/2-y, 1/2+z; (vi) 1-x, y-1/2, 1/2-z; (vii) x-1, 1/2-y, 1/2+z; (viii) 1+x, y, z; (ix) x, 1/2-y, 1/2+z; (x) x+1, 1.5-y, 1/2+z.

these reasons, a good comparison can be made between the $[B_4O_5(OH)_4]^{2-}$ anion found in the cesium borate and that described in K₂ $[B_4O_5(OH)_4]$ 2H₂O (19). In the triangular borons, the B-O bonds go from 1.312 to 1.401 Å in the potassium compound and only from 1.361 to 1.379 Å in the cesium compound; the mean values for B–O bonds are 1.362 and 1.374 Å for the first borate and 1.368 and 1.367 for the second. For the tetrahedral borons, the mean values of the B–O bonds are 1.479 and 1.480 Å in the potassium compound and 1.474 and 1.473 Å in the cesium compound.

Two Cs⁺ ions and three isolated water molecules are disposed between $[B_4O_5(OH)_2]^{2-}$ anions. There are seven and six oxygen atoms around the cesium ions (Table 4); Cs(1) is close to four water molecules (two Ow(1) and two Ow(2)) and three oxygen atoms belonging to two different $[B_4O_5(OH)_4]^{2-}$ anions. Cs(2) is close to one water molecule

and five oxygen atoms which belong to five different borate anions. In the potassium borate, the two potassium ions have seven oxygen around them (19).

In the structure of these two compounds there are eight short oxygen-oxygen distances, which can only be explained in terms of O–H ··· O bonds (see Table 4). Although the O...O distances are almost the same in the two compounds, the values of the O-H and O ... H distances in the potassium compound go from 0.72 to 1.50 Å and 1.43 to 2.27 Å, respectively; the standard of error is high, 0.11 Å (19). In the cesium compound, more normal distances were found (Table 4) between 0.61 and 0.95 Å for O-H distances and 1.96 to 2.11 Å for O ... H distances. The differences may be explained by the more precise location of the hydrogen atoms in the cesium borate (Table 2). Even if the building blocks are identical, these two borates are not similar: the cell volume of $K_2[B_4O_5(OH)_4]^2H_2O$ (19) (a = 12.899 Å; $b = 11.774 \text{ Å}; c = 6.859 \text{ Å}, V = 1041 \text{ Å}^3, Z = 4$, space group $P2_12_12_1$ is less than that of the cesium borate (see Table 1). The difference is due in part to the difference in radii of the two cations $(K^+ \text{ and } Cs^+)$ and in part to the supplementary water molecule in the cesium borate. In this compound, all three water oxygens have similar thermal parameters but the hydrogen atoms are less precisely localized.

Other $M_2B_4O_7 \cdot xH_2O$ exist with different borate anions. The structural formula for $Li_2B_4O_7 \cdot 3H_2O$ is $Li[B_2O_3(OH)]H_2O$ with a borate anion in chain; the shorthand notation is $3: \infty^1(\Delta + 2T)$ (24). In $Tl_2B_4O_7 \cdot 3H_2O$ (25), $Na_2B_4O_7 \cdot 4H_2O$ (26), and $Na_2B_4O_7 \cdot H_2O$ (27), another polyanion was found with the shorthand notation $3: \infty^1(\Delta + 2T) + \Delta$; its structural formula is $[B_4O_6(OH)_2]^{2-}$. Two other borates can be pointed out, $Ag_2B_4O_7 \cdot 2H_2O$ (28) and $Tl_2B_4O_7 \cdot 1.5H_2O$ (29), where more condensed isopolyanions exist, such as $[B_{12}O_{18}$ $(OH)_6]^{6-}$ and $[B_8O_{12}(OH)_4]^{4-}$, respectively; their shorthand notations are $12:(3\Delta + 3T)_2$ and $7: \infty^1(4\Delta + 3T) + \Delta$, respectively.

 $Cs_2[B_4O_5(OH)_4]3H_2O$ indexed powder pattern is given in Table 5; calculations, indexing, and refinements were done with the NBS*AIDS83 program (30). The figures of merit are good: $M_{20} = 71$ (31) and $F_{30} = 203$ (0.004,36) (32). It is interesting to note that the intensities calculated from the crystal structure data are often different from the observed intensities; that is probably due to preferred orientations which occur in the analyzed powder obtained by single-crystals grinding.

DEHYDRATION

FIG. 2. Configuration of the polyborate ion $[B_4O_5(OH)_4]^{2-}$ in $Cs_2[B_4O_5(OH)_4]3H_2O$. Atoms have arbitrary radii.

Figure 3 shows the thermal analyses performed on $Cs_2[B_4O_5(OH)_4]3H_2O$. Two losses appear on the TG curve around 100 and 200°C; the calculations permit us to

TABLE 5X-ray Powder Diffraction Pattern of Cs2[B4O5(OH)4]3H2O

hkl	$2 heta^\circ$ obs	$2 heta^\circ$ calc	d obs (Å)	I obs	I calc
011	10.260	10.266	8.610	6	9
100	10.487	10.483	8.432	9	11
-110	13.048	13.053	6.777	10	9
002	13.446	13.456	6.575	5	2
-111	14.524	14.526	6.093	14	11
111	14.864	14.857	5.958	8	5
020	15.541	15.546	5.695	28	25
-102	16.803	16.798	5.274	15	9
021	16.948	16.951	5.226	8	8
102	17.363	17.371	5.101	4	1
-112	18.528	18.525	4.7856	72	48
120	18.785	18.787	4.7196	19	17
112	19.040	19.048	4.6554	7	4
121	20.092	20.094	4.4153	55	55
022	20.612	20.615	4.3049	25	22
013	21.701	21.706	4.0910	74	62
-210	22.464	22.468	3.9540	5	1
-211	23.263	23.263	3.8205	76	61
122	23.380	23.393	3.7997	7	7
211	23.685	23.686	3.7533	15	22
-113	23.849	23.850	3.7278	21	21
031	24.385	24.381	3.6479	15	6
113	24.467	24.467	3.6352	12	9
202	25.460	25.464	3.4951	59	26
023	25.618	25.624	3.4737	3	2
130	25.711	25.711	3.4621	4	3
-212	25.898	25.897	3.4377	16	8
- 220	26.274	26.278	3.3886	/	4
-131	26.514	26.509	3.3397	3	3
212	20.037	20.037	3.3413	2	3
- 2 2 1	20.975	20.908	3.3033	12	10
221	27.100	27.101	3.2870	21	10
122	27.340	27.557	2 1 8 2 0	16	10
-104	28.019	28.025	3.0982	5	2
-132	28.752	28.785	3.0810	100	100
132	29 297	29,299	3.0460	4	4
104	29.297	29.475	3.0275	42	28
222	29.968	29.972	2.9793	30	26
114	30,531	30.523	2.9256	20	14
033	31.137	31.138	2.8700	6	2
040	31.387	31.388	2.8478	6	1
230	31.733	31.688	2.8175	15	2
300	31.813	31.811	2.8106	13	4
041	32.129	32.135	2.7836	12	8
-231	32.258	32.271	2.7728	4	4
231	32.595	32.585	2.7449	8	4
310	32.806	32.792	2.7278	25	11
-311	33.285	33.282	2.6896	33	16
-141	33.822	33.815	2.6481	5	2
-204	33.976	33.971	2.6364	86	24
-232	34.262	34.268	2.6151	25	15
232	34.872	34.862	2.5708	10	8
015	34.992	34.986	2.5622	24	14
302	35.132	35.122	2.5523	15	5
320	35.573	35.590	2.5216	1	1
-142	35.818	35.808	2.5050	2	1
-321	36.040	36.046	2.4900	11	3

 TABLE 5—Continued

h k l	$2 heta^\circ$ obs	$2 heta^\circ$ calc	d obs (Å)	I obs	I calc
-115	36.268	36.266	2.4749	10	9
115	36.970	36.972	2.4295	9	6
-134	37.432	37.427	2.4006	4	4
-224	37.563	37.559	2.3925	27	13
025	37.648	37.641	2.3873	11	2
-322	37.785	37.800	2.3790	1	1
134	37.980	37.977	2.3672	11	13
240	38.097	38.104	2.3602	11	10
-313	38.225	38.234	2.3526	3	2
322	38.633	38.616	2.3297	16	13
-125	38.856	38.846	2.3164	13	6
143	39.375	39.376	2.2865	11	7
330	39.871	39.873	2.2591	16	13
051	40.132	40.139	2.2457	2	1
-323	40.711	40.707	2.2147	13	11
242	40.848	40.842	2.2077	2	3
150	40.999	41.005	2.1993	2	3
006	41.148	41.153	2.1917	8	6

propose a dehydration process in two steps:

 $Cs_{2}[B_{4}O_{5}(OH)_{4}]3H_{2}O \xrightarrow{-3H_{2}O} Cs_{2}[B_{4}O_{5}(OH)_{4}]$ $\xrightarrow{-2H_{2}O} Cs_{2}B_{4}O_{7}.$

This mechanism is in good agreement with the structure of this compound; by heating, the isolated water molecules are first removed and then the hydroxyl groups. However, it was impossible to stabilize the intermediate compound $Cs_2[B_4O_5(OH)_4]$ or $Cs_2B_4O_7 \cdot 2H_2O$. As for previous studies on the dehydration process of other borates (33, 34), this failure can be explained considering the change in the cesium ion coordination during the dehydration. After the first loss, the coordination of Cs(2) changes from six to five but that of Cs(1) changes from seven to three, which is a very unstable situation which leads to the structure collapsing. This explanation is confirmed by the DTA curve (Fig. 3). The first two endothermic peaks concern the dehydration in

FIG. 3. TG and DTA of $Cs_2[B_4O_5(OH)_4]3H_2O$ with a heating rate of 600° C/h.

two steps, which leads to an amorphous anhydrous borate, $Cs_2B_4O_7$. This one crystallizes around 460°C as proven by the exothermic peaks. The other endothermic phenomena may be correlated with the $Cs_2O-B_2O_3$ phase diagram (2) where $Cs_2B_4O_7$ melts incongruently around 690°C. All these results are confirmed by examination of the Guinier-Lenné photograph where the powder pattern of the starting material, $Cs_2[B_4O_5(OH)_4]3H_2O$, until 150°C, then an amorphous phase until 450°C, and above this temperature the powder pattern of $Cs_2B_4O_7$ (PDF 21-195) appear successively. The differences between the temperatures observed on the thermal curves (Fig. 3), and those revealed on the Guinier-Lenné photograph are due to the heating rates used, 600 and 6°C/h, respectively.

REFERENCES

- 1. A. P. Rollet and Andrès, Bull. Soc. Chim. Fr. 847 (1931).
- 2. J. Kocher, Thesis, Université de Paris, 1966.
- 3. J. Krogh-Moë and M. Ihara, Acta Crystallogr. B 23, 427 (1967).
- 4. H. Behm, Acta Crystallogr. C 40, 1114 (1984).
- 5. M. Schläger and R. Hoppe, Z. Anorg. Allgem. Chem. 620, 1867 (1994).
- 6. J. Krogh-Moë, Arkiv Kemi 12, 247 (1958).
- 7. J. Krogh-Moë, Acta Crystallogr. B 30, 1178 (1974).
- 8. Y. Wu, H. Tang, and C. Chen, Appl. Phys. Lett. 62, 2614 (1993).
- 9. E. Hontanon, M. Lazaridis, and Y. Drossinos, J. Aerosol Sci. 27, 99 (1996).
- 10. B. R. Bowsher, Prog. Nucl. Energy 20, 199 (1987).
- 11. J. de Meulenaer and H. Tompa, Acta Crystallogr. 19, 1014 (1965).
- G. M. Sheldrick, "SHELX-76: A program for Crystal Structure determination." University of Cambridge, 1976.

- "International Tables for X-ray Crystallography" Vol. IV, Kynoch Press, Birmingham, U.K., 1974 (Present distributor, Kluwer Academic, Dordrecht).
- 14. G. Heller, Top. Curr. Chem. 131, 39 (1986).
- 15. C. L. Christ and J. R. Clark, Phys. Chem. Miner. 2, 59 (1977).
- 16. N. Morimoto, Miner. J. (Japan) 2, 1 (1956).
- 17. H. A. Levy and G. C. Lisensky, Acta Crystallogr. B 34, 3502 (1978).
- C. Giacovazzo, S. Menchetti, and F. Scordari, Am. Miner. 58, 523 (1973).
- M. Marezio, H. A. Plettinger, and W. H. Zachariasen, *Acta Crystallogr.* 16, 975 (1963).
- 20. R. Jonda, G. Heller, and J. Pickard, Z. Kristallogr. 154, 1 (1981).
- 21. C. Smykalla and H. Behm, Z. Kristallogr. 183, 51 (1988).
- X. Solans, M. Font-Altaba, J. Solans, and M. V. Domenech, Acta Crystallogr. B 38, 2438 (1982).
- X. Solans, J. Solans, and M. V. Domenech, Acta Crystallogr. C 53, 994 (1997).
- D. Louër, M. Louër, and M. Touboul, J. Appl. Crystallogr. 25, 617 (1992).
- 25. K. H. Woller and G. Heller, Z. Kristallogr. 156, 151 (1981).
- W. F. Cooper, F. K. Larsen, P. Coppens, and R. F. Giese, *Am. Miner.* 58, 21 (1973).
- 27. S. Menchetti and C. Sabelli, Acta Crystallogr. B 34, 1080 (1978).
- M. Shakibaie-Moghadam, G. Heller, and U. Temper, Z. Kristallogr. 190, 85 (1990).
- 29. M. Touboul, C. Bois, and D. Amoussou, J. Solid State Chem. 48, 412 (1983).
- A. D. Mighell, C. R. Hubbard, and J. K. Stalick, *Nat. Bur. Stand.* (U.S.) Tech. Note 1141, 54 (1981).
- 31. P. M. de Wolff, J. Appl. Crystallogr. 1, 108 (1968).
- 32. G. S. Smith and R. L. Snyder, J. Appl. Crystallogr. 12, 60 (1983).
- 33. M. Touboul and G. Nowogrocki, J. Solid State Chem. 136, 216 (1998).
- 34. M. Touboul and E. Bétourné, Solid State Ionics 84, 189 (1996).